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Abstract—Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or

multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video

frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow,

to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can

model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent

convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent

connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network

parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections

from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture

discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional

operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods.

With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well

performance.

Index Terms—Deep learning, recurrent neural networks, 3D convolution, video super-resolution

Ç

1 INTRODUCTION

SINCE a large number of high-definition devices have
sprung up, generating high-resolution videos from origi-

nal low-resolution content, namely video super-resolution
(SR), is under great demand. Recently, variousmethods have
been proposed to handle this problem, which can be classi-
fied into two categories: 1) single-image SR [7], [14], [15], [24],
[27], [46], [52] super resolves each low-resolution video frame
independently, and 2) multi-frame SR [2], [3], [32], [32], [34],
[38] super resolves a low-resolution video frame by jointly
considering its multiple adjacent frames as the input and
especiallymodeling the temporal dependency among them.

The temporal dependency is usually considered as an
essential component of video SR, which critically affects the
final quality of SR. Such dependency often occurs in two
different aspects: long-term and short-term along the time

axis. The long-term dependency means that all video frames
at different timesteps share the similar visual content, e.g.,
the background of video frames usually remains constant or
varies smoothly with the movement of camera view. While
the short-term dependency mainly refers to sudden motions
of partial visual objects during only a few adjacent frames,
e.g., the moving human leg in a video where a man is run-
ning. Compared with the long-term dependency that
focuses on the modeling of constant or slow-varying con-
tent, the short-term dependency emphasizes on the under-
standing of fast-varying motions.

Existing multi-frame SR methods generally model the
long-term and short-term dependencies by indistinguishably
extracting subpixel motions of video frames, e.g., estimating
optical flow based on sparse prior integration or variation reg-
ularity [2], [32], [34]. But such motion estimation can only be
effective for video sequences that contain slow-varying
motions. Most multi-frame SR methods [3], [13], [38] also
make a strict assumption that the underlying motion has a
simple analytic form, e.g., the blur kernel is known, which
oversimplifies the complex nature of real-world video
sequences. To overcome these problems, several solutions
have been explored by avoiding the explicit motion estima-
tion [37], [44]. Unfortunately, they still have to perform
implicit motion estimation to reduce the temporal aliasing,
and use additional resolution enhancement when fast-
varying motions are encountered. In addition, the computa-
tional cost of these multi-frame SR methods is usually very
high. The computational bottleneck lies in the accuratemotion
estimation, e.g., taking about two hourswhen super resolving
a 720�480 frame [32]. Such high computational cost dramati-
cally limits the real-world application of thesemethods.
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A class of deep models named recurrent neural networks
(RNNs) [49] have shown their great power of temporal
dependency modeling in sequential data processing, e.g.,
action recognition [8] and image-sentence matching [23]. In
this paper, we explore the use of RNNs for dealing with the
temporal dependency in video SR. A straightforward
approach in this direction is to treat given low-resolution
frames as sequential inputs to a RNN, and then regard its
outputs at different timesteps as predicted high-resolution
frames. However, such an approach is infeasible resulting
from three major problems. 1) Since both feedforward and
recurrent connections of the RNN are fully connected, and
the number of pixels in a video frame is usually very large,
e.g., tens of thousands, the RNN will contain millions of
learning parameters. These parameters will dramatically
increase the model complexity and make the model very
hard to train. 2) The hidden states of RNN are 1D vectors
that are globally transformed from input 2D low-resolution
frames. Such dimensionality reduction inevitably loses the
structure information of original frames which plays a cru-
cial role in the prediction of high-resolution frames. 3) Recur-
rent connections operating on hidden states can only be
capable of modeling global slow-varying motions but not
those short-term fast-varying ones. Because the important
fine-grained details for characterizing fast-varying motions
mostly exist in raw frames rather than hidden states [2].

To dealwith these issues,we propose a bidirectional recur-
rent convolutional network (BRCN) for efficient multi-frame
SR. The proposed network can be regarded as a fully convolu-
tional version of RNNs, which replaces the commonly-used
full feedforward and recurrent connections with weight-
sharing convolutional connections. In this way, learning
parameters of BRCN only include filter weights and biases.
Then the number of parameters can be largely reduced from
millions to a few tens of thousands. The hidden states now
are 2D feature maps convolved by filters rather than 1D
vectors as vanilla RNNs. These feature maps can naturally
preserve the structure information of edge direction and rela-
tive position in the visual content of original video frames.

To extract the important fine-grained details from raw
frames for modeling fast-varying motions, the feedforward
connections in BRCN are 3D convolutions rather than con-
ventional 2D ones. Particularly, this scheme is implemented
by feeding multiple input layers at the previous timesteps
to the current hidden layer in a convolutional manner. So
the hidden layer is able to capture informative patterns
along both spatial and temporal dimensions, to describe the
motions occurring at the same location across a series of
frames. Different from recurrent convolutions that mainly
deal with long-term slow-varying motions, 3D feedforward
convolutions focus on enhancing the understanding of fast-
varying motions. They directly operate on original frames
that can provide more visual details than abstracted hidden
layers. In fact, these two types of convolutions can coopera-
tively model the temporal dependency in a comprehensive
way due to their complementary characteristics.

The direction of vanilla RNNs is usually forward along
the timeline, whichmodels the dependency relation between
the current frame and its previous frames. To additionally
consider the dependency relation between the current frame
and its future frames, our BRCN combines a forward and a

backward sub-networks to jointly make the final prediction.
We apply the proposed model to super resolve videos with
complex motions. The experimental results demonstrate its
efficiency and effectiveness by achieving magnitude faster
speed than other multi-frame SR methods, as well as better
performance comparedwith state-of-the-art methods.

Our main contributions can be summarized as follows.

� We propose a bidirectional recurrent convolutional
network for multi-frame SR, where the temporal
dependency can be efficiently modelled by recurrent
and 3D feedforward convolutions.

� It is an end-to-end framework which does not need
pre-/post-processing. Our convolutions can scale to
videos with any spatial size and temporal step.

� We achieve better performance and faster speed than
existing multi-frame SR methods.

The rest of the paper is organized as follows. In Section 2,
we briefly review related work. In Section 3, we detail the
proposed model. In Section 4, we apply the proposed model
to the task of video SR. Finally, we conclude the paper in
Section 5.

2 RELATED WORK

We review related work from the following perspectives.
Single-Image SR. Irani and Peleg [24] propose the primary

work for this problem, followed by Freeman et al. [14]
studying it in a learning-based way. To alleviate high
computational complexity, Bevilacqua et al. [5] and Chang
et al. [7] introduce manifold learning techniques which can
reduce the required number of image patch exemplars. For
further acceleration, Timofte et al. [46] propose the
anchored neighborhood regression method. Yang et al. [52]
and Zeyde et al. [53] exploit compressive sensing to encode
image patches with a compact dictionary and obtain sparse
representations. To make the dictionary cover large appear-
ance variations, Huang et al. [20] expand the internal patch
search space by allowing geometric variations. Considering
that sparse coding based methods ignore the consistency of
pixels in overlapped patches, Gu et al. [16] develop a convo-
lutional sparse coding based SR method.

In addition, there exist some state-of-the-art methods
based on convolutional neural networks (CNNs). Dong et al.
[9], [10], [11] learn a conventional CNN for single-image SR
which achieves good performance as well as fast speed. Kim
et al. [28] develop a residual CNN and find that increasing
the depth of networks can greatly improve the final accuracy.
Shi et al. [42] design an efficient sub-pixel CNN that can per-
form real-time SR on a single K2 GPU. Kim et al. [29] propose
a deeply-recursive CNN for single-image SR which obtains
state-of-the-art results. In this work, we focus onmulti-frame
SR by modeling temporal dependency which is more suit-
able for dealingwith video sequences.

Multi-Frame SR. Tsai and Huang [48] propose the seminal
work of multi-frame SR, which is then extensively studied in
[36]. Some early works [3], [17], [38] perform simple motion
estimation with affine models. To suit the nature of complex
motions in real world videos, Baker and Kanade [2] extract
optical flow as motion estimation for video SR. Then, various
improvements [6], [32], [33], [34] around this work are
explored to better handle complex motions. However, these
methods all suffer from the high computational cost due to
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the accurate motion estimation. To deal with this problem,
Protter et al. [37] and Takeda et al. [44] avoid motion estima-
tion by employing nonlocal mean and 3D steering kernel
regression. Unfortunately, these methods still need to esti-
mate pixel-wise motions when encountering large motions.
Liao et al. [30] generate multiple SR drafts from input low-
resolution videos anduse a deepCNN for ensemble learning.
It can exploit contextual information of motion estimation
provided from external data for video SR. While we propose
bidirectional recurrent and 3D feedforward convolutions as
an alternative to efficiently model the temporal dependency
that can achievemuch faster speed andwell performance

Deep Learning. Since the year of 2006, many deep learning
models have been proposed and applied to various applica-
tions [18], [22]. Our work is related to some work that is
built on CNN and RNN as follows. Jain and Seung [25] and
Eigen et al. [12] demonstrate the effectiveness of CNN for
image denoising with certain patterns. Ji et al. [26] extend
convolutions from 2D input images to 3D videos, which
learn both spatial and temporal features simultaneously
and show effectiveness on a variety of video tasks [47].
Schusterand and Paliwal [39] propose a bidirectional RNN
to model temporal dependency in both forward and back-
ward directions. Shi et al. [50] design a convolutional ver-
sion of long short-term memory RNN (LSTM-RNN) [19] for
accurate precipitation nowcasting. Different from them, our
proposed model can be regarded as a fully convolutional
version of RNN, which includes especially designed recur-
rent and 3D feedforward convolutions for efficient temporal
dependency modeling in the task of video SR.

It should be noted that this paper is a systematic extension
of our preliminary conference version [21]. In previous wok,
we only empirically find that the modeling of fixed temporal
contexts (by conditional convolution) can improve the per-
formance.While in this submission, we reframe the previous
2D feedforward and conditional convolution jointly as a 3D
feedforward convolution, allowing the model to flexibly get
access to varying temporal contexts in a natural way. Under
this more general framework, the previous work can just be
regarded as a special casewhen the temporal step of 3D feed-
forward convolution is 2. More importantly, we present con-
siderable new explanations on: 1) how the 3D feedforward
convolution can suitably handle short-term fast-varying
motions by modeling temporal contexts, and 2) how it can
cooperate with the recurrent convolution for temporal
dependencymodeling in a complementaryway.

In addition, we perform more experiments to verify the
effectiveness of our model as follows. 1) We demonstrate the
optimal model architecture by testing a variety of BRCNs
with different filter sizes of recurrent convolution, temporal
lengths of training volume, directions of network and tempo-
ral steps of 3D feedforward convolution. 2) We comprehen-
sively evaluate the performance of our model by performing
experiments on more datasets, measuring our results with
more criteria, super resolving videos using more upscaling
factors, making comparisons with more recent methods, and
presenting more visualization results. 3) We extend our
model to simultaneously process three color channels rather
than luminance channel only, and show that our model can
outperform or be comparable to state-of-the-art methods but
run orders of magnitude faster than them.

3 BIDIRECTIONAL RECURRENT CONVOLUTIONAL

NETWORK

3.1 Formulation

Given a low-resolution, noisy and blurry video, our goal is
to obtain a high-resolution, noise-free and blur-free version.
We propose a bidirectional recurrent convolutional network
(BRCN) to map the low-resolution frames to high-resolution
ones. As shown in Fig. 1, the proposed network contains a
forward sub-network and a backward sub-network to
model the temporal dependency from both previous and
future frames. The two sub-networks of BRCN are denoted
by two black blocks with dash borders, respectively. In the
forward sub-network, there are four layers including the
input layer, the first hidden layer, the second hidden layer
and the output layer. The states of all these layer are all 2D
feature maps rather 1D vectors as vanilla RNNs. These fea-
ture maps are connected by two types of convolutions:

3D Feedforward Convolution. The 3D feedforward convo-
lutions denoted by black arrows (in Fig. 1) connect not only
the input layer at the current timestep but also multiple
adjacent layers at the previous timesteps to the current hid-
den layer. The details of a 3D feedforward convolution are
shown in Fig. 2, where its temporal step is 3 denoted by yel-
low, red and black lines. By regarding the previous input
layers as the contextual information for the current input
layer, the convolution can extract discriminate representa-
tions in both spatial and temporal dimensions to describe
short-term fast-varying motions occurring in these input
layers. The temporal step of 3D feedforward convolution
should not be very large, since fast movements usually
occur in local adjacent frames.

Recurrent Convolution. The recurrent convolutions
denoted by blue arrows (in Fig. 1) connect hidden layers of
two adjacent frames, where the inference of the current hid-
den layer is conditioned on the hidden layer at the previous
timestep. The details of recurrent convolution are shown in
Fig. 2, denoted by blue lines. The filter weights of recurrent
convolution are shared among all the timesteps, so such an
autoregressive scheme is able to capture repetitive patterns
of transformation between pairwise hidden layers within a
long range. But different from 3D feedforward convolutions,
2D recurrent convolutions operate on a more abstract level
as hidden layers rather than detailed frames, and therefore
aremore suitable for capturing global slow-varying patterns.

We use these two convolutions in both forward and
backward sub-networks, with the goal can make full use of
the forward and backward temporal dynamics. We denote
the frame set of a low-resolution video1 X as Xif gi¼1;2;...;T ,
and infer the other three layers as follows.

First Hidden Layer. When inferring the first hidden layer
Hf

1;i (or Hb
1;i) at the ith timestep in the forward (or back-

ward) sub-network, two different inputs are considered: 1)
the stacked ith frame and its previous (or future) tw1

ones
along the time axis, denoted by X½ �fi (or X½ �bi ), connected by a

3D feedforward convolution, and 2) the hidden layer Hf
1;i�1

(or Hb
1;iþ1) at the i� 1th (or iþ 1th) timestep connected by a

recurrent convolution:

1. Note that we upscale each low-resolution frame in a video
sequence to the desired size with bicubic interpolation in advance.
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Hf
1;i ¼�ðWf

1 �̂ ½X�fi þUf
1 �Hf

1;i�1 þ Bf
1Þ

Hb
1;i ¼�ðWb

1�̂ ½X�bi þUb
1 �Hb

1;i�1 þ Bb
1Þ;

(1)

where Uf
1 (or U

b
1) represents the filters of recurrent convolu-

tion in the forward (or backward) sub-network. The size is
n1 � su1 � su1 � n1, where su1 � su1 is the filter size and n1 is
the number of filters, as well as the number of feature maps
in Hf

1;i (or H
b
1;i). B

f
1 (or Bb

1) represents biases. � denotes the

conventional 2D convolution. The activation function is the

rectified linear unit (ReLu): �ðxÞ ¼ maxð0; xÞ [35].
Wf

1 and Wb
1 represent the filters of 3D feedforward con-

volution in the forward and backward sub-networks,
respectively. Both of them have the size of c� sw1

� sw1
�

tw1
� n1, where c is the number of input channels of a video

frame, sw1
� sw1

is the spatial filter size, and tw1
is the tem-

poral step. �̂ denotes the 3D convolution which can be for-
mulated as follows:

hxyz
j ¼

Xc�1

k¼0

Xsw1�1

h¼0

Xsw1�1

w¼0

Xtw1�1

t¼0

whwt
kj xxþh;yþw;zþt

k ; (2)

where hxyz
j is the value at position ðx; y; zÞ on the jth feature

map in Hf
1;i, xxþh;yþw;zþt

k is the value at position
ðxþ h; yþ w; zþ tÞ on the kth stacked input channel in X½ �fi ,
and whwt

kj is the value at position ðh;w; tÞ in the filter con-

nected between the kth stacked input channel and jth fea-

ture map.
Note that conventional 2D feedforward convolution can

feed only one frame at the current timestep into the hidden
layer. It focuses on the representation learning of spatial con-
tent for the current frame. In contrast, our 3D convolution
treats stacked adjacent frames as input, and additionally han-
dles motion information by making comparison among the
current and its previous frames. Similar 3D convolution has
been previously explored in [26], [47], but differs from them,
ours is bidirectional in the context of RNN rather than undi-
rected in CNN. Particularly, in the forward (or backward)
sub-network, the convolution takes ith frame and only its pre-
vious (or future) frames as inputs, rather than all the frames in
their cases. In our network, the 3D feedforward convolution
also cooperates with directional recurrent convolution to
jointlymodel the temporal dependency in video frames.

Second Hidden Layer. This phase projects the obtained fea-
ture maps Hf

1;i (or H
b
1;i) to another hidden layer, which aims

to capture the nonlinear structure in the video sequence. In
addition to intra-frame mapping by conventional feedfor-
ward convolution [9], we consider two inter-frame map-
pings using recurrent and 3D feedforward convolutions,
respectively. The projected feature maps in the second hid-
den layer Hf

2;i (or Hb
2;i) in the forward (or backward) sub-

network can be obtained as follows:
Fig. 2. The details of 3D feedforward and recurrent convolutions (best
viewed in colors).

Fig. 1. The proposed bidirectional recurrent convolutional network (BRCN).
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Hf
2;i ¼�ðWf

2 �̂½H�f1;i þUf
2 �Hf

2;i�1 þ Bf
2Þ

Hb
2;i ¼�ðWb

2�̂½H�b1;i þUb
2 �Hb

2;i�1 þ Bb
2Þ;

(3)

where Wf
2 and Wb

2 represent the filters of 3D feedforward
convolutions in the forward and backward sub-networks,
respectively. Both of them have the size of n1 � sw2

� sw2
�

tw2
� n2. U

f
2 and Ub

2 represent the filters of recurrent convo-
lution, their sizes are n2 � su2 � su2 � n2.

Note that the goal of modeling nonlinear structure is
achieved by fixing the filter size sw2

� sw2
of 3D feedforward

convolution to be 1� 1. So this convolution is equivalent to a
local full connection with nonlinear activation function. Dif-
ferent from traditional full connection, this one occurs locally
instead of globally that aims to detect more subtle nonlinear
details. Particularly, it temporally fuses multiple feature vec-
tors at each spatial location within different timesteps, and
efficiently slides over all the locations of feature maps in a
similar way as convolution. As shown in Fig. 3, the elements
at the same spatial location across n1 feature maps inHf

1;i (or
Hf

1;i�1, H
f
1;i�2) comprise a n1-dimensional vector. These vec-

tors are then concatenated and fully-connected to a n2-dimen-
sional vector obtained by n2 feature maps in Hf

2;i. Similarly,
such fully-connected scheme is shared among all the other
locations in a sliding manner. This kind of convolution can
also be regarded as a 3D version of “network in network”
[31], where the nonlinear projection is performed in both spa-
tial and temporal dimensions rather than spatial only.

It should be noted that the inference of the two hidden
layers can be regarded as a representation learning phase.
We could stack more hidden layers to increase the repre-
sentability of our network. But it will dramatically increase
the network complexity, so we only use two hidden layers.

Output Layer. When super resolving a low-resolution
frame, its visual content is related to not only its adjacent
frames at previous timesteps but also the frames at future
timesteps. So we use two directional sub-networks to sepa-
rately model these temporal dependencies along the time
axis and reverse, respectively. We combine their obtained
n2-dimensional feature maps in second hidden layers to
jointly predict the desired high-resolution frame

Oi ¼ Wf
3 �̂½H�f2;i þWb

3�̂ ½H�b2;i þ Bf
3 þ Bb

3; (4)

where Wf
3 and Wb

3 represent the filters of 3D feedforward
convolutions in forward and backward sub-networks,
respectively. Their sizes are both n2 � sw3

� sw3
� tw3

� c.
We do not use any recurrent convolution for output layer.

3.2 Connection with Temporal Restricted
Boltzmann Machine

Wewill discuss the connection between the proposed BRCN
and temporal restricted boltzmann machine (TRBM) [43]
that has similar network architecture, with the goal to illus-
trate that BRCNcanmodel the long-term contextual informa-
tion in a finer level, i.e., patch-based rather than frame-based.

As shown in Fig. 4, TRBM and BRCN contain similar
recurrent connections (blue lines) between pairwise hidden
layers, and multi-step feedforward connections (red and
black lines) between input layers and hidden layer. They
share the common flexibility to model and propagate
temporal dependency along the time. However, TRBM is a
generative model while BRCN is a discriminative model,
and TRBM contains an additional connection (green line)
between pairwise input layers for data generation.

In fact, BRCN can be regarded as a deterministic, bidirec-
tional and patch-based implementation of TRBM. Specifi-
cally, when inferring the hidden layer in BRCN, as
illustrated in Fig. 4 (b), 3D feedforward convolution extracts
temporally overlapped patches from the inputs, each of
which is fully connected to a n1-dimensional vector in the
featuremapsHf

1;i. For recurrent convolution, since each filter
size is 1� 12 and all the filters contain n1 � n1 weights, a
n1-dimensional vector in Hf

1;i is fully connected to the corre-
sponding n1-dimensional vector in Hf

1;i�1 at the previous
timestep. Therefore, the patch connections of BRCN are actu-
ally those of a “discriminative” TRBM. In other words, by
setting the spatial filter size of 3D feedforward convolution
as the size of the whole frame, BRCN is equivalent to TRBM.

Compared with TRBM, BRCN has the following advan-
tages for handling the task of video SR. 1) BRCN restricts
the receptive field of original full connection to a patch
rather than the whole frame, which can capture the tempo-
ral change of visual details. 2) BRCN replaces all the full
connections with weight-sharing convolutional ones, which
largely reduces the computational cost. 3) BRCN is more
flexible to handle videos of different sizes, once it is trained
on a fixed-size video dataset. Similar to TRBM, the proposed
model can be generalized to other sequence modeling appli-
cations, e.g., video motion modeling [45].

Fig. 3. 3D feedforward convolution as local full connection (filter size:
1�1�3).

Fig. 4. Comparison between TRBM and the proposed BRCN. For both
models, we just show details at two timesteps for clear illustration.

2. We select 1�1 as our default filter size of recurrent convolution as
explained in Section 4.2.1.
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3.3 Network Learning

Through combining Equations (1), (3) and (4), we can obtain
the desired prediction OðX ;QÞ from the low-resolution
video X , where Q denotes the network parameters. Net-
work learning proceeds by minimizing the mean square
error (MSE) between the predicted high-resolution video
OðX ;QÞ and the groundtruth Y

L ¼ OðX ;QÞ � Yk k2; (5)

via stochastic gradient descent. Actually, stochastic gradient
descent is enough to achieve satisfying results, although we
could exploit other advanced optimization algorithms but
with higher computational cost, e.g., L-BFGS.

During optimization, the filter weights of 3D feedfor-
ward convolution at the 1st temporal step are pre-trained
on static images [9], whereas the filter weights of recurrent
and 3D feedforward convolutions at the rest temporal steps
are initialized by randomly sampling from a Gaussian dis-
tribution with mean 0 and standard deviation 0.001. Note
that the pretraining step only aims to speed up training by
providing a better parameter initialization, due to the lim-
ited size of training set. This step could be avoided by alter-
natively using a larger scale training set. We experimentally
find that using a smaller learning rate (e.g., 1e� 4) for the
weights in the output layer is crucial to obtain good
performance.

4 EXPERIMENTAL RESULTS

To verify the effectiveness, we apply the proposed model to
the task of video SR, and present both quantitative and
qualitative results as follows.

4.1 Datasets and Implementation Details

We use 25 YUV format video sequences3 as our training set,
which have been widely used in many video SR methods
[32], [37], [44]. To enlarge the training set, model training is
performed in a volume-based way, i.e., cropping multiple
overlapped volumes from training videos and then regard-
ing each volume as a training sample. During cropping,
each volume has a spatial size of 32�32 and a temporal
length of 10. The spatial and temporal strides are 14 and 8,

respectively. As a result, we can generate roughly 41,000
volumes from the original dataset.

We test our model on two datasets, namely Set1 and Set2.
Set1 includes a variety of challenging videos: Dancing, Flag,
Fan, Treadmill and Turbine [40], which contain complex
motions with severe motion blur and aliasing. Set2 has 4
videos: City, Calendar, Foliage and Walk, which have been
used by state-of-the-art methods [30], [32]. Note that we do
not have to extract volumes during testing, since the convo-
lutional operation can scale to videos of any spatial size and
temporal length.

We generate the corresponding low-resolution videos for
both datasets with the following steps: 1) using Gaussian fil-
ter with standard deviation 2 to smooth each original frame,
and 2) downsampling the frame by a factor with bicubic
method.4

4.2 Network Architecture

Some important parameters of our proposed network are
illustrated as follows: sw1

¼9, tw1
¼3, sw2

¼1, tw2
¼3, sw3

¼5,
tw3

¼3, su1 ¼1, su2 ¼1, n1 ¼64, n2 ¼32, and c ¼1.5 Note that
for 3D feedforward convolution, varying the number and
spatial size of its filters does not have a significant impact on
the performance, because some filters with certain spatial
sizes are already in a regime where they can already well
model the frame content [9], [51]. We will focus on the selec-
tions of other parameters especially associatedwith sequence
modeling, and study the relation between performance and
parameters, as well as the best trade-off between perfor-
mance and speed. The evaluation measures include both
peak signal-to-noise ratio (PSNR) and testing time (Time).

4.2.1 Filter Size of Recurrent Convolution

We test three different filter sizes of recurrent convolution
including 1�1, 3�3 and 5�5. For simple comparison, we
experiment with only the forward sub-network of our pro-
posed BRCN on the Set1 dataset with an upscaling factor of
4, as shown in Table 1. We can see that when the temporal
length of training volume (Length) is fixed, the larger filter
size produces the worse PSNR performance. It is mainly

TABLE 1
The Results of PSNR (dB) and Time (sec) by the Proposed Model with Different Filter Sizes
of Recurrent Convolution (Filter Size) and Temporal Lengths of Training Volume (Length)

Filter size Length
Dancing Flag Fan Treadmill Turbine Average

PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

1� 1
5 28.03 28.43 33.74 22.68 27.54 28.08
10 28.01 3.19 28.46 0.76 33.75 1.46 22.68 0.46 27.54 0.60 28.08 1.29
15 28.02 28.50 33.75 22.66 27.52 28.09

3� 3
5 28.02 28.43 33.72 22.66 27.37 28.04
10 28.03 9.41 28.45 2.24 33.69 4.13 22.65 1.34 27.42 1.77 28.05 3.78
15 28.06 28.44 33.68 22.67 27.45 28.06

5� 5
5 28.00 28.39 33.67 22.61 27.31 27.99
10 27.95 19.88 28.41 4.76 33.71 8.76 22.65 2.87 27.35 3.76 28.01 8.01
15 27.98 28.52 33.75 22.59 27.29 28.03

3. https://media.xiph.org/video/derf/.

4. Here we focus on two factors of 4 and 2 that are usually consid-
ered settings in video SR.

5. Similar to [46], we only deal with luminance channel in the YCbCr
color space.
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attributed to the border effects. In particular, when the filter
size is larger than 1�1, the size of feature maps in hidden
layers will gradually shrink to zero after doing recurrent
convolution for multiple timesteps. So we have to perform
zero-padding on the shrunk feature maps to keep their sizes
from decreasing. In this way, zero-valued pixels are intro-
duced to the border of feature maps, and will degenerate
the final prediction of the corresponding positions in high-
resolution frames. We can also observe from the table that a
larger filter size requires much more testing time, and thus
lowers the efficiency of our model. So we use 1�1 as our
default filter size of recurrent convolution.

4.2.2 Temporal Length of Training Volume

As stated in Section 4.1, we use volumes as our training data
with a temporal length of 10. Itmeans thatwhen super resolv-
ing a video frame, we can only use its previous or future
frames with a window size of 10 as contextual information.
We also experiment with another two temporal lengths in
terms of 5 and 15 as presented in Table 1. When the filter size
of recurrent convolution (Filter size) is fixed, the longer length
achieves slightly better PSNR performance. Ideally, we could
use volumes with very long length (> 30) for training so that
much more contextual information can be used. But RNN-
based methods cannot model such long-term dependency
relation well due to the problems of gradient vanishing and
explosion [4]. Although we could replace the used ReLu acti-
vation function with long short-term memory (LSTM) to
release these problems, it will greatly increase the complexity
of our network by introducing a large number of learning
parameters. In addition, even though the testing time of using
different temporal lengths is the same, volumes with a longer
length will need relatively higher computational cost during
training. Therefore, we use ReLu as our activation function
and set the temporal length of training volume as 10.

4.2.3 Direction of Network

To demonstrate the effectiveness of our bidirectional
scheme in BRCN, we evaluate four networks with different
directions as follows:

1) Undirected (U): this network has no recurrent convo-
lution, and its temporal step of 3D feedforward con-
volution is fixed as 1 similar to a conventional 2D
convolution. U�2 (or U�4) enlarges the model size
by using two times (or four times) the number of fil-
ters per layer in U.

2) Forward (F): forward sub-network which consid-
ers the temporal dependency only in the forward
direction. F w/o f removes the 3D feedforward
convolution, while F w/o r removes the recurrent
convolution.

3) Backward (B): back sub-network which considers the
temporal dependency only in the backward direction.

4) Bidirectional (F+B): bidirectional recurrent convolu-
tional network which combines the forward and
backward sub-networks together.

The comparison of these networks is illustrated in Table 2.
From the table we can see that, without recurrent or 3D feed-
forward connections for temporal dependency modeling,
undirected network performs the worst. Forward and back-
ward sub-networks obtain similar better performance which
verifies the usefulness of exploiting contextual information
in either forward or backward direction. When combining
them together, the bidirectional network can achieve better
results. It is attributed to the fact that each video frame is
related to not only its previous frames but also the future
ones. Note that the testing time of bidirectional networks is
not much longer than that of others, because we accelerate it
by separately proceeding two directional sub-networks in
parallel and then combining their predictions.

4.2.4 Comparison of Two Convolutions

Our proposed model contains two different components for
aggregating temporal information of video frames: 3D feed-
forward convolution and recurrent convolution. To properly
disentangle their contributions to the final performance, we
report the performance of two kinds of models in Table 2: 1)
models using only 3D feedforward convolution but without
recurrent convolution (w/o r), and 2) models using only

TABLE 2
The Results of PSNR (dB) and Time (sec) by the Proposed Model with Different Directions of Network

(Direction), Model Sizes (Size), and Temporal Steps of 3D Feedforward Convolution (Step)

Direction Size Step
Dancing Flag Fan Treadmill Turbine Average

PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

U �8 k 1 27.81 1.41 28.04 0.36 33.61 0.60 22.42 0.15 27.50 0.23 27.87 0.55
U�2 �20 k 1 27.92 3.27 28.07 0.77 33.64 1.41 22.46 0.45 27.56 0.59 27.93 1.30
U�4 �57 k 1 27.94 10.55 28.18 2.45 33.64 4.52 22.47 1.45 27.58 1.92 27.96 4.18
F w/o f �13 k 1 27.94 2.42 28.30 0.55 33.47 1.03 22.64 0.33 27.49 0.43 27.97 0.95
F w/o r �16 k 2 28.00 2.11 28.31 0.48 33.21 0.89 22.62 0.28 27.35 0.38 27.90 0.83
F �21 k 2 28.01 3.19 28.46 0.76 33.75 1.46 22.68 0.46 27.54 0.60 28.08 1.29
F �29 k 3 28.03 4.70 28.53 1.07 33.78 2.03 22.68 0.64 27.56 0.84 28.12 1.85
F �37 k 4 27.99 6.07 28.49 1.38 33.65 2.63 22.58 0.83 27.37 1.09 28.02 2.40
B w/o f �13 k 1 27.98 2.41 28.28 0.55 33.46 1.02 22.62 0.33 27.47 0.43 27.96 0.95
B w/o r �16 k 2 28.01 2.09 28.26 0.48 33.28 0.90 22.60 0.29 27.35 0.38 27.90 0.83
B �21 k 2 28.04 3.17 28.48 0.76 33.76 1.45 22.67 0.46 27.53 0.60 28.09 1.28
B �29 k 3 28.07 4.70 28.51 1.06 33.77 2.04 22.68 0.65 27.59 0.84 28.12 1.85
B �37 k 4 27.99 6.06 28.50 1.38 33.72 2.63 22.63 0.83 27.54 1.06 28.07 2.39
F+B �42 k 2 28.06 3.20 28.50 0.78 33.78 1.47 22.69 0.47 27.61 0.62 28.12 1.30
F+B �58 k 3 28.16 4.71 28.57 1.08 33.81 2.06 22.72 0.65 27.73 0.85 28.20 1.87
F+B �74 k 4 28.04 6.08 28.52 1.39 33.74 2.65 22.66 0.84 27.55 1.10 28.10 2.41
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recurrent convolution but without 3D feedforward convolu-
tion (w/o f). In the forward sub-network, by comparing U
with F w/o r (or F w/o f), we can conclude that only using 3D
feedforward convolution (or recurrent convolution) can
improve the performance by 0.03-0.10dB. Similar observa-
tions can also be found in the backward sub-network. When
jointly using the two convolutions as shown in F, the perfor-
mance can be further improved by 0.11-0.18dB. It indicates
that the two convolutions can cooperatively model the tem-
poral dependency in a comprehensive way due to their com-
plementary characteristics.

4.2.5 Temporal Step of 3D Feedforward Convolution

Since there exist a large number of fast-varying motions in
video frames, we exploit 3D feedforward convolutions in the
proposed network to learn the spatio-temporal patterns. To
investigate what is the optimal temporal step that can best
describe these motions, we set the temporal step as 2, 3 and
4, respectively, and compare their performance with differ-
ent model configurations in Table 2. We can find that when
the temporal step is 3, we can achieve the best performance
for both forward and backward sub-networks, as well as
their combinations. It means that the previous or future two
frames can provide most helpful contextual information for
super resolving the current frame.When the temporal step is
larger than 3, the performance slightly reduces. It seems rea-
sonable since most fast-varying motions often occur locally
in several frames rather than remain for a long time. But it
should be noted that the selection of temporal step also
depends on the velocity of motion, the frame rate of video
and the frequency of frame sampling.

4.2.6 Model Size

Formany deep learningmethods, their performance tends to
increase with model size, i.e., the number of learnable
parameters. For our proposedmodel, its performance gradu-
ally improves when the model size increases from 8 to 58 k.
To study whether the performance gains come from the pro-
posed network components or the increased model size, we
report the model size of each model configuration in Table 2,
and compare our proposedmodel with three undirected net-
works with comparable model sizes. When comparing with
U�2 (Size�20 k), the proposed F (Size�21 k) and B (Size�21
k) can outperform it by 0.15 and 0.16 dB, respectively. The
proposed F+B (Size�58 k) performs better than U�4
(Size�57 k) by 0.24 dB with faster speed. These evidences
demonstrate the effectiveness of our network components.

4.3 Comparison with State-of-the-Art Methods

We select the network architecture with the best perfor-
mance as our default BRCN, and compare with seven single-
image SR and fourmulti-frame SRmethods including:

� Bicubic: bicubic interpolation.
� SC: sparse coding-based method [52].
� K-SVD: dictionary learning method based on singu-

lar value decomposition [53].
� NE+NNLS: nonnegative neighbor embedding [5].
� ANR: anchored neighbor regression method [46].
� NE+LLE: locally linear neighbor embedding [7].
� SR-CNN: image SR with CNN [9].

� 3DSKR: 3D steering kernel regression [44].
� Enhancer: a commercial software for video SR [1].
� FUS: fast video upsampling [41].
� DeepSR: SR draft ensemble learning with CNN [30].
For all these methods, we use their publicly available

codes to perform all the experiments.6 It should be noted that
we do not make comparison with the state-of-the-art multi-
frame SR method [32], because we do not have the corre-
sponding code and its released results on the Set2 dataset are
obtained in a different setting as ours. But instead we com-
pare with the recent state-of-the-art method named DeepSR
[30] which is shown to outperform [32] inmost cases.

4.3.1 PSNR and SSIM Comparison

The results of all the methods on the Set1 and Set2 datasets
are compared in Tables 3 and 4, respectively. In each table,
we present the results with two upscaling factors in terms
of 2 (Scale2) and 4 (Scale4), and use three evaluation meas-
ures including peak signal-to-noise ratio, structural similar-
ity (SSIM) and testing time (Time).

For the upscaling factor of 4, we can see that our BRCN
clearly outperforms all the compared methods in both
averaged PSNR and SSIM. Specifically, compared with the
state-of-the-art single-image SR methods (e.g., SR-CNN,
ANR and K-SVD), our multi-frame-based method can sur-
pass them by 0.33�0.59 dB and 0.30�0.45 dB in PSNR on
the two datasets, respectively. It is mainly attributed to the
beneficial mechanism of temporal dependency modeling.
BRCN also performs much better than the two representa-
tive multi-frame SR methods (3DSKR and Enhancer) on
the two datasets. In fact, most existing multi-frame-based
methods tend to fail catastrophically when dealing with
very complex motions, since it is difficult for them to esti-
mate these motions with pinpoint accuracy. Alternatively,
our method exploits recurrent and 3D feedforward convo-
lutions that are able to learn the both long-term content
relation and short-term spatio-temporal patterns for chal-
lenging motions. Note that overall our BRCN performs
slightly worse than the state-of-the-art method DeepSR
that additionally exploits multiple SR drafts by different
motion estimations with ensemble learning. Different from
it, BRCN does not use any time-consuming motion estima-
tion so that it runs much faster while still achieving com-
parable performance.

For the upscaling factor of 2, we can observe from both
tables that our method can outperform other methods by a
much larger margin. It demonstrates that our method is bet-
ter at super resolving the videos with a smaller upscaling
factor. In particular, video frames with a smaller upscaling
factor usually have more detailed information in their visual
content, which can greatly facilitate the learning of local
spatio-temporal features for fast-varying motions.

4.3.2 Time versus PSNR

We also present the comparison of Time in both Tables 3
and 4, where all the methods are implemented on the same
machine (Intel CPU 3.10 GHz and 32 GB memory). The

6. We retrained SR-CNN on the new dataset, and found that the pre-
trained and retrained SR-CNNs obtain similar results.
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publicly available codes of compared methods are all in
MATLAB while SR-CNN and ours are in Python. For clear
illustration, we plot Time versus PSNR on the Set2 dataset in
Fig. 7. From the figure, we can see that our BRCN takes
10.27 sec per frame on average, which is orders of magnitude
faster than the fastest multi-frame SR method 3DSKR. It
should be noted that the speed gap is not caused by the dif-
ferent MATLAB/Python implementations. As stated in [32],
[44], the computational bottleneck for the existing multi-
frame SR methods is the accurate motion estimation, while
ourmodel explores an alternative based on efficient convolu-
tionswhich hasmuch lower computational complexity. Note
that the speed of our method is worse than the fastest single-
image SR method ANR. It is likely that our method involves
the additional phase of temporal dependency modeling, so
that we can achieve better performance. In addition, com-
pared with recent state-of-the-art single-image SR methods
including [28], [29], [42], some of them might achieve better
performance than our model, but they use a much deeper
network with more learnable parameters, so they should be
much slower than our BRCN. We also test our model on a
NVIDIA K20 GPU (denoted as BRCN-GPU) and achieve
real-time video SR by taking 0.48 sec per frame.

4.3.3 Visual Comparison

In addition to the quantitative evaluation, we present some
qualitative results. Since we only deal with the luminance
channel in the YCbCr color space, here we simply upscale the
other two channelswith bicubic interpolation forwell illustra-
tion [46]. We present the closeup comparison with the best
performedmethods on the two datasetswith different upscal-
ing factors in Figs. 5 and 6, respectively. Please enlarge and view
these figures on the screen for better comparison. From these fig-
ures, we can observe that our method is able to recover more
image details than others under variousmotion conditions.

4.4 Color Video Super-Resolution

In previous experiments, we deal with color videos by first
transforming video frames from RGB space to YCbCr space
and then dealing with only luminance channel in the YCbCr
space. Next we will consider to simultaneously handle all
three channels in the RGB space. We can achieve this goal
by resetting the number of input channels as c ¼3, and feed-
ing more channels into the proposed network without
changing the learning procedure and network architecture.

We perform experiments of color video SR on the
Set2 dataset. The comparison methods contain a baseline

TABLE 3
The Results of PSNR, SSIM and Time by All the Methods on the Set1 Dataset with Two Upscaling Factors of 2 and 4

Model Dancing Flag Fan Treadmill Turbine Average

Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 Scale2 Scale4

PSNR

Bicubic 29.11 26.83 28.95 26.35 34.34 31.94 23.68 21.15 28.08 25.09 28.83 26.27
SC [52] 30.04 26.80 23.89 26.28 26.43 32.50 22.12 21.27 21.87 25.77 24.87 26.52
K-SVD [53] 29.88 27.69 29.91 27.61 34.79 33.55 24.37 22.22 29.04 27.00 29.59 27.61
NE+NNLS [5] 29.72 27.63 29.69 27.41 34.74 33.45 24.28 22.08 28.91 26.88 29.46 27.49
ANR [46] 29.81 27.67 29.70 27.52 34.71 33.49 24.33 22.24 28.94 27.04 29.49 27.59
NE+LLE [7] 29.78 27.64 29.70 27.48 34.69 33.46 24.33 22.22 28.93 26.98 29.48 27.52
SR-CNN [9] 30.00 27.81 30.01 28.04 34.75 33.61 24.41 22.42 29.27 27.50 29.69 27.87
3DSKR [44] 29.51 27.81 29.72 26.89 34.50 31.91 24.38 22.32 28.20 24.27 29.17 26.64
Enhancer [1] 29.40 27.06 28.99 26.58 34.86 32.14 24.27 21.20 28.37 25.60 29.18 26.52
BRCN 34.36 28.16 33.44 28.57 36.20 33.81 26.87 22.72 33.35 27.73 32.84 28.20

SSIM

Bicubic 0.8434 0.7124 0.8246 0.7091 0.8575 0.8163 0.7518 0.5978 0.8319 0.7219 0.8218 0.7115
SC [52] 0.5745 0.6010 0.8383 0.7061 0.8731 0.8029 0.7807 0.6030 0.8324 0.7014 0.7798 0.6828
K-SVD [53] 0.8626 0.6699 0.8569 0.7514 0.8666 0.8219 0.7896 0.6448 0.8569 0.7548 0.8465 0.7285
NE+NNLS [5] 0.7355 0.6074 0.8517 0.7387 0.8671 0.8204 0.7841 0.6297 0.8536 0.7458 0.8184 0.7084
ANR [46] 0.8608 0.6166 0.8512 0.7440 0.8676 0.8227 0.7861 0.6430 0.8555 0.7579 0.8442 0.7168
NE+LLE [7] 0.7032 0.6231 0.8507 0.7429 0.8645 0.8212 0.7834 0.6422 0.8537 0.7565 0.8111 0.7171
SR-CNN [9] 0.7889 0.7966 0.8588 0.7597 0.8659 0.8270 0.7943 0.6689 0.8604 0.7672 0.8336 0.7638
3DSKR [44] 0.7530 0.6521 0.8530 0.7420 0.8501 0.8120 0.7723 0.6450 0.8430 0.7263 0.8142 0.7154
Enhancer [1] 0.9094 0.7364 0.8359 0.7286 0.8495 0.7901 0.7715 0.6365 0.8433 0.7306 0.8419 0.7245
BRCN 0.8541 0.7757 0.9080 0.7764 0.9325 0.8499 0.8661 0.6818 0.9238 0.7860 0.8968 0.7739

Time

Bicubic - - - - - - - - - - - -
SC [52] 109.42 45.47 34.80 12.89 28.26 12.92 41.36 15.47 39.17 16.49 50.60 20.64
K-SVD [53] 7.17 2.35 1.83 0.58 3.19 1.06 1.15 0.35 1.63 0.51 2.99 0.97
NE+NNLS [5] 71.47 19.89 18.84 4.54 33.05 8.27 11.46 2.60 15.58 3.67 30.08 7.79
ANR [46] 1.98 0.85 0.49 0.20 0.79 0.38 0.31 0.12 0.44 0.18 0.80 0.35
NE+LLE [7] 13.61 4.20 3.39 0.96 5.61 1.76 2.05 0.57 2.82 0.80 5.49 1.66
SR-CNN [9] 1.42 1.41 0.37 0.36 0.63 0.60 0.16 0.15 0.25 0.23 0.56 0.55
3DSKR [44] 4224 1211 957 255 1580 323 443 127 697 173 1580 418
Enhancer [1] - - - - - - - - - - - -
BRCN 4.70 4.71 1.08 1.08 2.05 2.06 0.65 0.65 0.85 0.85 1.87 1.87
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method: Bicubic and three state-of-the-art color video SR
methods: Enhancer [1], FUS [41] and DeepSR [30]. As we
have demonstrated the effectiveness of BRCN on different
upscaling factors, here we only evaluate the performance
with the upscaling factor of 4. We also try two different
learning strategies for the proposed BRCN: 1) Y only: this is
a single-channel (c ¼1) network trained only on the lumi-
nance channel. While Cb and Cr channels are directly
upscaled using bicubic interpolation, and 2) RGB: this is a
three-channel (c ¼3) network trained on the RGB channels.

The comparisons of PSNR and SSIM by all the methods
are shown in Table 5, where PSNR and SSIM are computed
in RGB and gray spaces, respectively. From the table, we can
see that our BRCN trained on RGB channels can achieve bet-
ter performance than the one trained only on the luminance
channel. Both two BRCNs can outperform FUS andEnhancer
by a large margin. Although without ensemble learning or
motion estimation, our BRCN-RGB can still obtain compara-
ble results as DeepSR, which demonstrates its effectiveness
onmodeling temporal dependency for color videos.

We also present some qualitative results by visually com-
paring all the super resolved results in Fig. 8. Our BRCN can
achieve much clearer results than Enhancer and FUS for all
the videos. Although BRCN quantitatively performs worse
than DeepSR in Table 5, its super resolved results look more
nature and have fewer obtrusive artifacts when large
motion occurs, e.g., the running car in the Foliage video and
the moving leg in theWalk video.

4.5 Filter and Feature Map Visualization

To study whether the proposed BRCN can learn meaningful
spatio-temporal patterns, we visualize the learned filters of
3D feedforward convolutions with upscaling factors of both
4 and 2. For each upscaling factor, we show the filters in
both the first hidden layer and output layer in the forward
sub-network, denoted by Wf

1 and Wf
3 , respectively. Since

Wf
1 and Wf

3 are both 3D filters, to obtain a clear visualiza-
tion, we set the temporal step of Wf

1 and Wf
3 as 3, and

sequentially present the detailed 2D filter weights at each
temporal step.

TABLE 4
The Results of PSNR, SSIM and Time by All the Methods on the Set2 Dataset with Two Upscaling Factors of 2 and 4

Model City Calendar Foliage Walk Average

Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 Scale2 Scale4 Scale2 Scale4

PSNR

Bicubic 26.26 24.81 21.54 20.17 24.97 23.00 27.89 25.35 25.16 23.30
SC [52] 25.25 24.70 22.20 20.17 24.82 22.92 26.78 25.17 24.76 23.24
K-SVD [53] 26.75 25.24 22.11 20.71 25.59 23.62 28.74 26.38 25.80 23.98
NE+NNLS [5] 26.68 25.18 22.05 20.64 25.52 23.54 28.61 26.22 25.72 23.89
ANR [46] 26.74 25.26 22.07 20.73 25.61 23.69 28.71 26.45 25.78 24.03
NE+LLE [7] 26.73 25.24 22.06 20.69 25.60 23.64 28.68 26.35 25.77 23.98
SR-CNN [9] 26.78 25.21 22.22 20.87 25.66 23.74 28.80 26.69 25.86 24.13
3DSKR [44] 26.50 25.22 22.01 20.70 25.31 23.65 28.75 26.33 25.64 23.97
Enhancer [1] 26.41 25.32 21.93 20.64 25.25 23.64 28.19 26.18 25.45 23.95
�DeepSR [30] - 25.72 - 21.39 - 24.92 - 26.67 - 24.67
BRCN 29.12 25.44 24.30 21.09 28.86 24.14 32.80 27.09 28.77 24.43

SSIM

Bicubic 0.6725 0.5130 0.6572 0.5177 0.6701 0.4892 0.8456 0.7488 0.7114 0.5677
SC [52] 0.6601 0.5057 0.6921 0.5051 0.7043 0.4840 0.8370 0.7368 0.7234 0.5579
K-SVD [53] 0.7099 0.5495 0.6965 0.5528 0.7094 0.5352 0.8681 0.7818 0.7460 0.6048
NE+NNLS [5] 0.7046 0.5428 0.6911 0.5417 0.6991 0.5253 0.8651 0.7683 0.7400 0.5945
ANR [46] 0.7105 0.5517 0.6981 0.5525 0.7117 0.5427 0.8684 0.7828 0.7472 0.6074
NE+LLE [7] 0.7094 0.5501 0.6906 0.5507 0.7102 0.5407 0.8677 0.7799 0.7445 0.6054
SR-CNN [9] 0.7168 0.5535 0.7022 0.5745 0.7154 0.5515 0.8684 0.7881 0.7507 0.6169
3DSKR [44] 0.7095 0.5621 0.6978 0.5733 0.7098 0.5663 0.8678 0.7810 0.7462 0.6206
Enhancer [1] 0.7123 0.5822 0.6920 0.5741 0.7102 0.5656 0.8639 0.7799 0.7446 0.6254
�DeepSR [30] - 0.6499 - 0.6937 - 0.7250 - 0.7694 - 0.7095
BRCN 0.8175 0.5751 0.7954 0.5878 0.8560 0.5865 0.9307 0.7842 0.8499 0.6334

Time

Bicubic - - - - - - - - - -
SC [52] 461.97 177.49 638.58 243.35 644.27 240.69 370.62 169.89 528.86 207.86
K-SVD [53] 24.35 7.36 24.09 6.95 18.36 5.16 18.42 5.94 21.40 6.35
NE+NNLS [5] 237.40 63.34 225.20 56.93 174.71 40.72 205.99 48.51 210.83 52.38
ANR [46] 5.96 2.76 5.45 2.46 4.48 1.90 4.61 2.16 5.13 2.32
NE+LLE [7] 42.52 13.90 40.88 12.44 30.97 9.05 34.18 10.76 37.14 11.54
SR-CNN [9] 3.44 3.43 3.52 3.51 2.92 2.92 2.92 2.92 3.20 3.20
3DSKR [44] 11929 3276 12050 3343 9935 2739 9935 2739 10964 3024
Enhancer [1] - - - - - - - - - -
�DeepSR [30] - 6620 - 6750 - 5239 - 5239 - 5962
BRCN 10.23 10.21 11.17 11.14 9.87 9.87 9.86 9.87 10.28 10.27

� indicates ensemble method.
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The learned filters for upscaling factors 4 and 2 are illus-
trated in Figs. 9 and 10, respectively. The filters of Wf

1 at 1st
temporal step exhibit some strip-like patterns, which can be
viewed as edge detectors. The filters at 2nd and 3rd temporal
steps show similar patterns but in a smoother style, and their
phases vary along with temporal steps. It indicates that when
super resolving a video frame, not only its current visual con-
tent is detected but also the relation to the contextual informa-
tion in its adjacent frames is temporallymodelled.

The filters of Wf
3 at 1st temporal step show some

centrally-averaging patterns, which illustrates that the pre-
dicted high-resolution frame is obtained by averaging over
the feature maps in the second hidden layer. This averaging
operation is also in consistent with the corresponding recon-
struction phase in patch-based SR methods (e.g., [52]), but
the difference is that our filters are automatically learned
rather than pre-defined. Regarding the learned filters at 2nd

Fig. 6. Closeup comparison among original frames and super resolved results by Bicubic, ANR, SR-CNN and BRCN, respectively, on the Set2 data-
set with an upscaling factor of 2.

Fig. 5. Closeup comparison among original frames and super resolved results by Bicubic, ANR, SR-CNN and BRCN, respectively, on the Set1 data-
set with an upscaling factor of 4.

Fig. 7. Time versus PSNR for all the methods.
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and 3rd temporal steps, we can observe the clear phase dif-
ference between pairwise filters, which demonstrates that
our model can learn meaningful time-varying features.
When comparing the learned filters of different upscaling
factors, we can see that the filters of a smaller factor show
more finer-grained patters for describing detailed content,
e.g., line-like patterns in Figs. 10b and 10c.

To investigate how such spatio-temporal filters can affect
the results of representation learning in the hidden layers, we
also show the feature maps of both the first and second
hidden layers in Fig. 11. The inputs are 3 successive low-
resolution video frames interpolated by the bicubic method
in advance. The outputs are predicted high-resolution frames
by the proposed BRCN. As we can see, feature maps of the
first hidden layer highlight various edges at different direc-
tions. By carefully zooming in these feature maps, we can
find there exist obviousmotion-specific patterns aroundmov-
ing objects, e.g., the dark and white pixels at the top edge of
skit (marked by yellow circles in the middle row). It is likely

TABLE 5
The Results of PSNR and SSIM for Color Video SR on

the Set2 Dataset with an Upscaling Factor of 4

Model City Calendar Foliage Walk Average

PSNR

Bicubic 21.91 17.26 20.06 21.60 20.21
FUS [41] 21.94 17.35 19.90 21.37 20.14
Enhancer [1] 23.22 19.16 22.29 24.82 22.37
�DeepSR [30] 24.24 19.86 23.51 25.26 23.22
BRCN-Y only 23.31 19.57 22.72 25.82 22.85
BRCN-RGB 23.53 19.68 23.03 25.58 22.96

SSIM

Bicubic 0.4220 0.4699 0.4275 0.6846 0.5010
FUS [41] 0.4251 0.4870 0.4380 0.6910 0.5103
Enhancer [1] 0.5481 0.5730 0.5702 0.7752 0.6166
�DeepSR [30] 0.6507 0.6938 0.7248 0.7714 0.7102
BRCN-Y only 0.5447 0.5985 0.6018 0.8081 0.6383
BRCN-RGB 0.5685 0.6325 0.6213 0.8247 0.6617

� indicates ensemble method.

Fig. 8. Visual comparison among input low-resolution frames and super resolved results by Bicubic, FUS, Enhancer, DeepSR and BRCN, respec-
tively, on the Set2 dataset with an upscaling factor of 4.

Fig. 9. Visualization of learned filters in the first hidden and output layers of the proposed BRCN, with an upscaling factor of 4.

Fig. 10. Visualization of learned filters in the first hidden and output layers of the proposed BRCN, with an upscaling factor of 2.
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that such motion-specific patterns for the current frame are
obtained by inferring the moving trend of skit from the previ-
ous frames. While for the feature maps of the second hidden
layer, they differ mainly on intensities and contain similar
motion-specific patterns. It is because the second hidden layer
focuses on nonlinearly fusing all the previous featuremaps to
more steady states for the following final prediction.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed the bidirectional recurrent
convolutional network (BRCN) for multi-frame SR. Our
main contribution is the novel use of bidirectional scheme,
recurrent and 3D feedforward convolutions for efficient
temporal dependency modeling. We have applied our
model to super resolve videos containing complex motions,
and achieved better performance and faster speed.

Our proposed model has the following limitations: 1) to
seek a good balance between performance and efficiency,
the model has a very shallow architecture (i.e., only 3 layers),
so its performance might not be the best among all the
recently released papers [28], [29], [42], 2) the low-resolution
images have to be pre-upsampled to the desired size before
inputting to the model, thus the computational complexity
grows quadratically with the upsampled spatial size, and 3)
due to the lack of large-scale video SR dataset, our model is
not directly learned from scratch but fine-tuned from pre-
trained weights on static images.

To further improve the performance, we will extend our
model to have a deeper architecture, e.g., based on 19 layers
VGG net [28], or incorporate some effective strategies, e.g.,
motion ensemble [30]. Although such complex extensions
could increase the computational complexity and thus slow
the running speed, they will help the model to better model
nonlinear properties in image spaces.

For speed acceleration, we will replace the previously
used bicubic pre-upsampling by automatically learning
diverse upsampling filters with deconvolution layers
[11]. In this way, the computational complexity is only pro-
portional to the small spatial size of original low-resolution
images, which can thus be largely reduced.

To learn our model with more flexibility, we plan to col-
lect a large-scale high-resolution video dataset, and try to
learn our model directly from raw videos.
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